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Abstract— Existing techniques for schema matching are 

classified as either schema-based, instance-based, or a 

combination of both. In this paper, we define a new class of 

techniques, called usage-based schema matching. The idea is to 

exploit information extracted from the query logs to find 

correspondences between attributes in the schemas to be 

matched. We propose methods to identify co-occurrence patterns 

between attributes in addition to other features such as their use 

in joins and with aggregate functions. Several scoring functions 

are considered to measure the similarity of the extracted 

features, and a genetic algorithm is employed to find the highest-

score mappings between the two schemas. Our technique is 

suitable for matching schemas even when their attribute names 

are opaque. It can further be combined with existing techniques 

to obtain more accurate results. Our experimental study 

demonstrates the effectiveness of the proposed approach and the 

benefit of combining it with other existing approaches. 
*
 

 

I. INTRODUCTION 
 

Schema matching has long been one of the most important, 

yet difficult, problems in the area of data integration. With the 

exploding number of information systems, the need for 

schema matching solutions is growing. In life sciences, 

information integration is becoming a bottleneck limiting 

what scientists can accomplish. Businesses are relying on 

integration more than ever before. In disaster recovery 

situations, several entities and authorities need to rapidly 

exchange information. Schema matching is a key component 

in all such applications. Moreover, many of today’s 

integration tasks have to cross country boundaries, thus 

adding a new dimension to this vexing challenge. 

The problem of schema matching is essentially to find 

correspondences (matches) between the attributes of two 

schemas. The set of generated matches is collectively referred 

to as a mapping between the schemas. Much attention has 

been paid to this problem in the literature, and many 

techniques have been proposed, e.g., [7,10,11,12,12,13]. 

These techniques are fundamentally divided into two classes 

based on the source of information they exploit to make their 

matching decisions. On one hand, schema-based techniques 

rely on the metadata available for the schemas in terms of 

attribute names, descriptions, data types, domains, and 

integrity constraints. Instance-based techniques, on the other 

hand, rely on the characteristics of the data instances such as 
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their format, distribution, entropy, and correlation with 

instances of other attributes. Many systems have also been 

proposed to utilize a combination of those techniques [6,7,12]. 

The instance-based technique, proposed in [11], tackled the 

problem of schema matching with opaque attribute (or 

column) names, i.e. when attribute names are unreliable for 

matching purposes. This is a very realistic case, especially 

when matching multi-lingual schemas. However, the authors 

only showed how their technique can match individual tables 

and not complete schemas. 

In this paper, we propose a new technique for schema 

matching, which does not fall in either of the previous two 

classes, but rather defines a new class of its own, which we 

refer to as usage-based schema matching. The proposed 

technique exploits the usage information of the attributes in 

the query logs to find matches, in contrast to relying on the 

schema information or the data instances. This may be the 

only option for schema matching if the information needed by 

the two other techniques is not available or not reliable 

enough to achieve good matching quality. The proposed 

technique first identifies co-occurrence patterns between 

attributes and additional features, such as their use in joins and 

with aggregate functions. Then, it employs a genetic 

algorithm to find the highest-score mappings according to the 

scoring function used to measure the similarity between the 

features of the matching attributes. 

Our technique is suitable for matching schemas even when 

their attribute names are opaque or when they have different 

layouts. It is applicable to match complete schemas, rather 

than individual tables. In addition, our technique can be 

combined with other matching techniques using the 

combination methods proposed in the literature (e.g., [6]) to 

obtain higher-quality matches. In this paper, we 

experimentally verify the effectiveness of the usage-based 

technique, and show that when combined with simple 

matchers like a data type matcher or established matching 

techniques like the Similarity Flooding algorithm [13], the 

generated matches indeed reach high degrees of accuracy. 

The paper makes the following contributions: 

1. The description of a new class of techniques for matching 

schemas based on the usage of their attributes in the query 

logs. In particular, we describe  details of two usage-based 

matchers (SLUB and ELUB). 

2. A prototype implementation of the proposed techniques, 

which employs a genetic algorithm to find the highest score 

mappings. 
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3. An extensive experimental study showing the effectiveness 

of the usage-based schema matching technique and the 

benefit of combining it with other techniques, including the 

Similarity Flooding algorithm especially when attribute 

names are opaque. 

In Section II, we discuss the related work. Section III 

presents the example that will be used throughout the paper. 

The usage based technique is described in Section IV, while 

the implementation issues are discussed in Section V. 

Experiments and their results are presented in Section VI, and 

finally Section VII concludes the paper and suggests 

directions for future work. 

II. RELATED WORK 
 

Schema matching has been extensively studied over the past 

two decades (See [15] for a comprehensive literature survey 

until 2001). Cupid [12] combines element-level and structure-

level schema-based techniques to perform schema matching. 

Element-level techniques focus on the properties of each 

attribute in isolation, while structure-level techniques consider 

relationships between attributes. LSD [7] is an extensible 

framework, which employs several schema-based and 

instance-based matchers, and uses machine learning 

approaches to train and combine them. COMA [6] is another 

framework for combining matchers, providing several 

strategies for aggregating their results. Madhavan et al. [12] 

propose the use of a corpus of previously matched schemas to 

match a pair of new schemas. Using a corpus of schemas is 

also considered by He et al. [10]. However, their focus is on 

deep web applications and they follow a holistic approach to 

simultaneously find mappings between all the schemas of the 

corpus. Kang et al. [11] propose using mutual information 

between attributes to match tables of schemas with opaque 

attribute names and data values. Similarity Flooding [13] is a 

fixpoint computation algorithm for matching schema graphs, 

aided by an attribute name matcher. All of these previous 

works did not consider using the query logs for schema 

matching. Therefore, our work can be seen as either 

complementary to them as it can be combined with such 

techniques within the same matching framework or the only 

alternative if the information required by the previous 

techniques is not available or unreliable. 

Much work has been focused on generating more complex 

types of mappings than finding simple one-to-one attribute 

correspondences. The Clio system [1,9] generates SQL-like 

mappings based on the attribute correspondences. iMap [5] 

focuses on finding complex relations between attributes in 

both schemas such as price=rate*(1+tax). More recently, 

Bohannon et al. [2] introduced contextual schema matching, 

in which a match between a pair of attributes is valid only 

when certain conditions are met in the data instances. Warren 

et al. [18] proposed a method to find the relation between 

attributes in one schema and substrings of multiple attributes 

in the second schema. We believe that this body of work can 

benefit from our usage-based approach, since more evidence 

about these complex relations can be found in the query logs. 

Finally, the idea of analyzing query logs has been used 

extensively in the area of self-tuning databases (e.g. [3,4]). 

III. THE BOOKSTORES EXAMPLE 
 

As our motivating example, we consider a fictitious 

company: AllBooks Inc. AllBooks mission is to provide 

online access to bookstores all over the world. One of their 

biggest challenges is how to match the schemas of the 

numerous bookstores to their own schema; so that the 

AllBooks web application can seamlessly forward queries to 

and retrieve answers back from each bookstore. The schemas 

of the bookstores have different structures, are written in 

different languages, and, in many cases, the table and attribute 

names are not easily interpretable. Moreover, the owners of 

the bookstores were willing to share their schemas, but not to 

provide labor for manual schema matching. AllBooks offered 

to collect the schemas of the bookstores, and provide each of 

them with a software tool that analyzes its query log such that 

the output of the analysis is sent back to AllBooks to help in 

the schema matching process. The rationale is to use a usage-

based schema matching technique whenever the schema-

based information is of low quality and cannot be relied on.  

Fig. 1 shows an example of the schemas of two bookstores 

(X-Books and Y-Books), that AllBooks had to deal with. 

Although different in layout, the two schemas cover the same 

information about the bookstore domain. In particular, they 

cover information about books, book authors, customers, and 

ordering history. The attribute names in the figure are shown 

to be easily interpretable, only for illustration purposes. The 

two schemas were derived from the TPC-W benchmark [16], 

which gives the specifications for building an online 

bookstore. The X-Books schema is a reduced version of the 

TPC-W schema, while the Y-Books schema is a modified 

version of the X-Books schema. We will be referring to this 

example throughout our discussion. 
 

IV. USAGE-BASED SCHEMA MATCHING 
 

The goal of the usage-based schema matching technique is 

to exploit similarities in the query patterns to match attributes, 

which seem to play the same role in their respective databases. 

We are not claiming that the query patterns in the same 

domain will always be similar. However, like schema-based 

techniques, which will only be effective when the attribute 

names share some similarities, usage-based techniques will be 

most effective when the query patterns are close to each other; 

a requirement that is likely to be met in many situations. For 

example, as in Section III, users of many bookstores are 

expected to issue similar queries because the semantics of 

these queries is entailed by the business activities rather than 

by the specifics of the schema design. The same argument 

applies to other domains like healthcare, finance, and 

scientific databases. 

Our proposed technique has two main phases: feature 

extraction and matching. The feature extraction phase collects 

information from the query logs characterizing the attributes’ 

roles and their interrelationships. The matching phase 

examines several potential mappings, and assigns a score for 
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each one of them. The scores are based on how well the 

features of the corresponding attributes match. The matching 

phase terminates by reporting the highest-score mapping (or 

mappings).  
 

A. Feature extraction  
 

During the feature extraction phase, the query log of each 

schema is scanned to collect both structure-level and element-

level features. The structure-level features are used by a 

Structure-Level Usage-Based matcher (SLUB), whereas the 

element-level features are used by an Element-Level Usage-

Based matcher (ELUB). 
 

1) Structure-level features: The structure-level features 

capture the usage relationships between attributes of the same 

schema. An attribute A appearing in a query Q would 

normally have a role in defining Q’s answer. A can be part of 

the answer (A occurs in the select clause), or it can have a 

filtering role (A appears in the where or having clauses), a 

grouping role (A occurs in the group by clause), or an 

ordering role (A occurs in the order by clause). Furthermore, 

if two attributes co-occur in the same query, they potentially 

have a usage relationship whose type is defined by the role of 

each of them in defining the query’s answer. However, in 

certain complex queries, we may not consider them to be 

related, as will be described shortly.  

Since we are considering four possible roles for the 

attributes, this results in 16 different types of possible 

relationships. The relationship types are referred to as select-

select, select-where, select-groupby, select-orderby, where-

select, etc. Note that with this naming convention, the term 

“where” is used to represent both the where and having 

clauses. 

Based on the 16 types of relationships, we build 16 graphs 

Gl(V,El), l ∈ [1,16], where V represents the set of attributes 

and El represents the set of relationships of the l
th

 type 

between the attributes. The weights on the edges of the graph 

are proportional to the frequency of occurrence of their 

corresponding relationship in the query log. They are 

calculated as follows. All weights are initially zero. For each 

query in the query log, all the relationships between the 

query’s attributes are identified, and the weights of their 

corresponding edges in the graphs are incremented by one. 

After scanning the whole query log, all the weights in the 

graphs are normalized by dividing each of them by the largest 

weight in its own graph.  This final normalization step ensures 

that the graphs’ weights are independent of the size of the 

query log.  

If we denote the adjacency matrix of Gl(V,El) by al, then we 

only need to maintain the lower triangular matrix of al, l ∈ 

[1,16], since the upper triangular matrices can be induced. For 

example, the upper triangular matrix for the select-select 

graph is identical to the transpose of its own lower triangular 

matrix. Also, the upper triangular matrix for the select-where 

graph is identical to the transpose of the lower triangular 

matrix for the where-select graph and vice versa.  

We now describe the three classes of queries we consider, 

and how to identify the usage relationships in each of them:  

1. SPJGO: Single-block Select-Project-Join queries with 

optional grouping and/or ordering. 

2. SPJGO-UEI: SPJGO queries with union, except and/or 

intersect. 

3. SPJGO-N: SPJGO queries with nested subqueries. 

For SPJGO queries, the identification process is 

straightforward. Each pair of attributes in the query has a 

relationship whose type depends on the two clauses where 

each of them occurs. For SPJGO-UEI queries, relationships 

are identified separately for each subquery because the 

attributes in one subquery do not affect the result of another 

subquery. Finally, for the SPJGO-N queries, relationships are 

first identified separately for each block, i.e., the blocks of the 

outer query and each inner subquery. Then, more relationships 

are identified between attributes occurring in different blocks. 

In particular, if the inner subquery is in the where or having 

clauses of the outer query, then its attributes occurring in the 

select, where and having clauses have a direct filtering role 
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(a) X-Books Schema 
 

(b) Y-Books Schema 
 

Fig. 1 Schemas of the bookstores example 
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in the result of the outer query, and therefore they are 

considered to be related to all the attributes occurring in the 

outer query as if they were occurring in its own where clause. 

This is unlike attributes occurring in the group by and order 

by clauses of the inner subquery, which do not have any direct 

role in the result of the outer query. If the inner subquery is in 

the from clause of the outer query, we follow the same 

strategy except that the attributes occurring in the select 

clause of the inner subquery are not considered to be related to 

those of the outer query.  

Note that equivalent queries, having different query forms, 

may exist in the query logs of both schemas. If the extracted 

features from these forms are significantly different, the 

matching quality would be negatively affected. However, the 

following example shows how the fine-grained usage 

relationships we identify are mostly preserved across different 

query forms. 
 

Example 4.1 This example shows three equivalent queries on 

the X-Books schema for finding book titles whose author’s 

last name is ‘Gray’. 
 

Q1: select I_TITLE from Item, Author 
       where I_A_ID=A_ID and A_LNAME=‘Gray’ 
 

Q2: select I_TITLE from Item 
       where I_A_ID in(select A_ID from Author 
                                        where A_LNAME=‘Gray’) 
 

Q3: select I_TITLE 
       from Item, (select A_ID from Author 
                                where A_LNAME=‘Gray’) 
       where I_A_ID=A_ID 
 

  

The identified relationships (or contributions) of the above 

three queries to the select-where relationship type are shown 

in Table I. The three contributions are almost identical except 

that the relationship between A_ID and A_LNAME is identified 

for Q2 and Q3 because it occurs in their subqueries, but not 

for Q1. While this discrepancy is not considered to be large, 

there are cases where the discrepancy between the 

contributions of two equivalent queries is larger. Consider the 

following two queries Q4a and Q4b, which use a parameter 

@list to together perform the same task as any of Q1, Q2 or 

Q3. 
 

Q4a: @list = select A_ID from Author 
                            where A_LNAME=‘Gray’ 
Q4b: select I_TITLE from Item 
         where I_A_ID in @list 
 

The contribution of Q4a and Q4b (collectively referred to as 

Q4) is shown in Table I. It has three differences from that of 

Q1 and two differences from that of Q2 and Q3. One 

approach to reduce this discrepancy is to identify relationships 

at the transaction-level. That is to find queries belonging to 

the same transaction and relate their attributes together. In this 

example, Q4a and Q4b can be considered to be in the same 

transaction. We will then determine that I_TITLE is part of 

the final result of the whole transaction and A_LNAME has a 

filtering role in it, so the two attributes should have the select-

where relationship. Currently, our implementation does not 

take transactions into account.                                     � 

 

2) Element-level features: Element-level features relate to the 

way each attribute is used in the query log regardless of the 

other attributes. For instance, some real-world schemas do not 

specify which attributes are the primary keys and which ones 

are the foreign keys. In such cases, the element-level feature 

extractor infers that an attribute is potentially a key attribute 

(primary or foreign) if it occurs in a join predicate. This 

inference becomes unnecessary if the same information could 

be directly extracted from the schema. Additionally, the 

extractor collects information about the usage of attributes 

with aggregate functions. We consider five such functions and 

divide them into three equivalence classes: {count}, {min, 

max} and {sum, avg}. For each attribute, we record whether it 

was used or not with each of these three classes of aggregate 

functions. A useful observation is that a potentially key 

attribute is highly unlikely to match an attribute that is 

aggregated with either sum or avg. It is also possible that the 

extractor infers information about the data types of the 

attributes based on the operations, functions, and literals they 

are used with, or compared to, in the query logs. However, 

since the data type information is typically available in the 

schemas, it would be pointless to infer it from the query log. 

Therefore in our experiments, we limited the element-level 

usage-based features to the key and aggregate information 

explained above. 
 

B. Matching and scoring functions 
 

The matching problem can be stated as follows. Given two 

schemas S1 and S2, where S1 has n1 attributes {x1, x2…xn1} and 

S2 has n2 attributes {y1, y2…yn2}, and given the features 

extracted for each of them; find a mapping m* from the 

attributes of S1 to those of S2, which gives the highest score 

for a particular scoring function. Any mapping m should 

provide the following information. 

1. The number of matching attributes, denoted by km. 

2. The identity of the km matching attributes from each 

schema, denoted by {xp
1
, xp

2
…xp

km

} for S1 and {yp
1
, 

yp
2
…yp

km

} for S2. 

3. The actual matches connecting each of the km attributes in 

S1 to only one of the km attributes of S2, i.e., m(xp
i
)=yq

j
, or 

equivalently m(pi)=qj. 

The mapping is called one-to-one mapping if n1=n2=km. It is 

called onto mapping if n1=km and n2 ≥ n1. Finally, it is called 

partial mapping if km < min(n1,n2), which is the most general 

case. The size of the space of all possible mappings in the 

most general case is given by ∑
=

),min(

0

21

21 !
nn

k

m

n

k

n

k

m

mm
kCC . 

TABLE I. CONTRIBUTION OF THE QUERIES OF EXAMPLE 4.1 TO THE SELECT-

WHERE RELATIONSHIP TYPE 

select-where A_ID A_LNAME I_A_ID I_TITLE

A_ID - Q2,Q3,Q4 - - 

A_LNAME - - - - 

I_A_ID - - - - 

I_TITLE Q1,Q2,Q3 Q1,Q2,Q3 Q1,Q2,Q3,Q4 - 
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The challenge of formulating an effective scoring function 

to compare between different mappings has been addressed in 

[11]. The key idea is to match two tables by building a 

complete graph for the attributes of each table, where the 

weight on each edge equals the mutual information between 

its end nodes. The table matching problem then reduces to 

graph matching. The authors proposed two possible scoring 

functions to measure the distance between a pair of graphs 

given a certain mapping. In particular, they classified the 

scoring functions into monotonic and non-monotonic in km, 

and they proposed an example for each class. Monotonic 

functions are not suitable for automatically estimating the 

correct number of mappings km*. If km* is not known and a 

monotonic function is used, the matching algorithm will 

conclude that either no attributes match (km*=0), or that the 

maximum number of attributes match (km*=min(n1,n2)), 

depending on the direction of monotonicity. Clearly, this is 

not the desired behavior for the matching algorithm. Thus, if 

the matching algorithm uses a monotonic scoring function, it 

has to be provided with a user estimate 
*

ˆ
mk for km*. This way, it 

will only consider mappings with km=
*

ˆ
mk . However, if it uses 

a non-monotonic function, it might be able to automatically 

estimate the correct value of km*, as we will explain shortly. 

We adapt the scoring functions proposed in [11] to fit our 

context. Firstly, for the structure-level features, we have 16 

pairs of graphs rather than one pair, so we assign a weight wl 

for the graphs representing the usage relationship of the l
th

 

type, where∑
=

=
16

1

1
l

lw . Secondly, the scoring functions are 

adjusted to fall in the range [0,1] to make sure they are 

comparable to each other when more than one matcher is 

combined. Thirdly, for the same reason, the goal should be to 

maximize all the scoring functions, rather than a mixture of 

maximize and minimize.  

We will now present the scoring functions used by the 

SLUB and ELUB matchers. We denote the adjacency 

matrices of the structure-level feature graphs of S1 and S2 as al 

and bl respectively, l ∈ [1,16]. 
 

Structure-level monotonic scoring function 
 

)1()])()][([]][[(1)(
16

1 1 1

2
   pmpmbppa

r

w
mf

l

k

i

k

j

jiljil

l

lm

su

m m

∑ ∑∑
= = =

−−=  

 This function uses the Euclidean distance to measure the 

dissimilarity between the 16 feature graphs of S1 and their 

corresponding graphs of S2 given a certain mapping m. 

Obviously, as km increases, the dissimilarity can potentially 

increase, and consequently the score decreases. Therefore, 

when the estimate 
*

ˆ
mk  is given to the matcher, all occurrences 

of km in (1) should be replaced by 
*

ˆ
mk . The variable rl is an 

upper bound to the value of the square root, which guarantees 

that the score does not exceed 1. Since the elements of al and 

bl are normalized, i.e., they are less than or equal to 1, the 

upper limit for the summation under the square root is km
2
. 

Since al and bl represent sparse graphs, a tighter upper bound 

for that summation can be (tl1
+tl2

)
2
, where tl1

 and tl2
 are the 

sums of nonzero elements in al and bl respectively. Therefore 

rl is given by
 

),min(
21 llm ttk + . 

 

Structure-level non-monotonic scoring function 
 

, (2)                 )()(
16

1 1 1

∑ ∑∑
= = =

Ψ=
l

k

i

k

j

lij

l

ln

su

m m

m
r

w
mf  

where 

( ) )3(
,)]()][([]][[1

0)]()][([0]][[,0
)(   

otherwise   pmpmbppa

pmpmb and  ppa            
m

jiljillij

jiljil

lij





−−

==
=Ψ

α
  

This function uses the absolute difference between the 

corresponding elements in al and bl given a certain mapping m 

to measure the dissimilarity between the graphs. When both 

elements are zero (no edge in both graphs), nothing is 

contributed to the score. However, if at least one of them is 

non-zero, then the mapping is either rewarded or penalized 

according to the control variable αlij. To explain how αlij is 

calculated, let βlij be the value multiplied by αlij in (3), which 

represents the dissimilarity between an element in al and its 

corresponding element in bl. If we consider the distribution of 

βlij across all possible mappings, we may expect that the value 

of βlij for m* (call it β*lij) is among the smallest values in this 

distribution (since m* is expected to minimize the 

dissimilarity between al and bl). Therefore if β g
lij is the value 

of the g-quantile of βlij, for some small value g (e.g., 

g∈[0.1,0.3]),  then β*lij should still be smaller than β g
lij. 

Consequently, if we set αlij to 1/β g
lij, the value of ψlij(m*) will 

be positive for most combinations of l, i and j, and therefore 

m* is expected to be rewarded the most among other 

mappings. Additionally, if any mapping m has a value for km 

greater than the correct value, it will have to make wrong 

matches between elements of al and bl whose βlij is expected 

to be greater than β g
lij and therefore the value of ψlij will be 

negative and m will be penalized. Similarly, if a mapping m 

has a value for km less than the correct value, it will not be as 

rewarded as m*. This way, a matcher using a non-monotonic 

scoring function can estimate the correct km*. 

The drawback of this technique is that when the graphs 

being matched are not very close to each other, the value of 

β*lij can be greater than β g
lij in many cases, which results in 

many false positives and false negatives in the produced 

matches. In [11], the authors assumed that the value 

corresponding to βlij in their problem setting, which they 

called the normal distance, is uniformly distributed. 

Therefore, they used the average of βlij to calculate their 

control variable α. However, using the average can result in 

poor results if the distribution of βlij is skewed. To address this 

issue, we use quantiles instead of average. Furthermore, they 

used a single value α irrespective of which element in the 

graph’s adjacency matrix is being considered, while we 

calculate a different value αlij for each graph type and 

combination of i and j, which gives a higher accuracy. 

The role of rl in (2) is similar to its role in (1). It guarantees 

that the score does not exceed 1, being an upper limit for the 

innermost two summations in (2). Observing from (3) that the 

maximum value for ψlij(m) is 1, then based on an analysis 
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similar to that used for (1), rl is calculated as 

min([min(n1,n2)]
2
, cl1

+cl2
), where cl1

 and cl2
 are the number of 

nonzero elements in al and bl respectively. Note that 

min(n1,n2) is used instead of km so that rl does not change as 

the mapping changes. 
 

Before considering the scoring functions for the ELUB 

matcher, we first show how we calculate a score Scoreeu for a 

matching pair of attributes from S1 and S2 respectively, based 

on their element-level features. Table II shows a simple 

feature compatibility matrix, which contrasts the features of 

the first attribute (rows) to those of the second one (columns). 

Scoreeu is initially zero. If both attributes have the same 

feature, it is incremented by 1/4. If they have contradicting 

features, it is decremented by 1. Scoreeu never exceeds 1. 
 

TABLE II. ELEMENT-LEVEL USAGE-BASED FEATURE 

COMPATIBILITY MATRIX 

 key count min, max sum, avg 

key 1/4 0 0 -1 

count 0 1/4 0 0 

min, max 0 0 1/4 0 

sum, avg -1 0 0 1/4 
 

We now consider the monotonic and non-monotonic scoring 

functions used by the ELUB matcher.  
 

Element-level monotonic scoring function 
 

( )  (4)            ))(,(1
1

1 ,0max)(
1









−−= ∑

=

mk

i

iieu

m

m

eu pmpScore
k

mf

 
 

This function calculates the dissimilarity between pairs of 

matching attributes in m using Scoreeu. It ensures that the 

score is non-negative, and does not exceed 1. 
 

Element-level non-monotonic scoring function  
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This function uses the control variable αi in the same way as 

in (3), where βi, here (1-Scoreeu(pi,m(pi))), represents the 

dissimilarity between a pair of attributes. It also ensures that 

the score is non-negative and does not exceed 1. 
 

To be resilient to the differences in schema layouts, the 

matching phase, which uses the scoring function we have 

discussed so far, is performed in two steps. In the first step, 

only non-foreign-key attributes are matched, while foreign key 

attributes are totally ignored. In the second step, foreign keys 

are matched, while ensuring that the matches obtained in the 

first step are left unchanged. The details of how the two steps 

are implemented will be explained in Section V. To see the 

intuition for such two steps, consider a group of non-foreign-

key attributes that are frequently queried together. Moreover, 

they exist in the same table in S1, but in different tables in S2. 

The two-step method, we described, will ensure that the 

matching of these attributes will not rely on their relationship 

with any foreign keys, which may or may not exist in the 

queries depending on the schema layout. For example, 

attributes I_TITLE and I_SUBJECT exist in Item table in the 

X-Books schema, but in Item and Subject tables 

respectively in the Y-Books schema. In our implementation, 

we use a conservative approach, where the attributes ignored 

in the first step are those which only appear in join predicates, 

rather than any general foreign key. 

V. IMPLEMENTATION 
 

For feature extraction, we used a free SQL parser [19]. Any 

other parser can be used as well. For the matching phase, 

since the space of all possible mappings is very large and an 

exhaustive search is too expensive, we implemented a genetic 

algorithm to find the optimal mapping, as an example of 

heuristic optimization methods. Other methods are also 

applicable. This section gives the details of the search 

algorithm and how several matchers can be combined together 

including SLUB, ELUB, and non-usage-based matchers. 
 

A. Genetic search algorithm 
 

Genetic algorithms represent an approximate method for 

solving optimization problems [14]. In our search algorithm, 

each chromosome (or candidate solution) represents a possible 

mapping. Hence, all mappings should have a uniform 

representation regardless of the number of matches or the 

identity of matched attributes. For this purpose, we introduce 

the notion of dummy attributes that are added to each of S1 

and S2, such that they both end up with the same number of 

attributes n’. Thus, each mapping will contain precisely n’ 

matches connecting all attributes in both schemas. However, a 

match is considered a real match only if it does not involve 

dummy attributes. A mapping can now be uniformly 

represented as an ordering of the n’ attributes of S2 in the form 

of (yp1
, yp2

…ypn’
), where the real matches are of the form 

m(i)=pi, i∈[1,n’] and both xi and ypi
 are non-dummy attributes. 

The number of dummy attributes to be added depends on the 

scoring function. For a monotonic function, where the 

estimate 
*

ˆ
mk  is given to the algorithm, then exactly n2- *

ˆ
mk  and 

n1- *
ˆ

mk  dummy attributes are added to S1 and S2 respectively, 

leading to n’=n1+n2- *
ˆ

mk . This guarantees that the generated 

mappings will contain at least 
*

ˆ
mk  real matches (in case all 

dummy attributes match to non-dummy attributes). However, 

since the monotonic functions presented in Section IV-B are 

all decreasing in km, m* will have exactly 
*

ˆ
mk  real matches. 

For a non-monotonic scoring function, then 
*

ˆ
mk  is considered 

to be zero, i.e., n2 and n1 dummy attributes are added to S1 and 

S2 respectively. Thus, the generated mappings may contain 

any number of real matches in [0, min(n1,n2)], depending on 

how many dummy attributes match to non-dummy attributes. 

Since the scoring function is non-monotonic in km, m* may 

also contain any number of real matches within the same 

range. 

In the scoring function, used as the fitness function of the 

genetic algorithm, only the real matches in the mapping are 
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taken into account. Constraints are specified such that only 

mappings containing some given matches are considered in 

the search space. We use these constraints in the second step 

of our matching phase, where the matches obtained for the 

non-foreign-key attributes in the first step have to remain 

fixed. The constraints are also used when the user has prior 

information about some correct matches. We specify 

constraints by dividing S1 attributes into constrained and non-

constrained attributes. Each constrained S1 attribute can only 

match a certain S2 attribute, while unconstrained S1 attributes 

are permitted to match any of the remaining S2 attributes. The 

stopping criterion we set is that the highest score encountered 

remains unchanged for some fixed number of iterations, 

N_Iterations. 

The backbone of our search algorithm is similar to any 

genetic algorithm [14]. Its details are not shown here for the 

lack of space. However, the specific algorithms used to 

generate new mappings, make crossovers and make 

mutations, all while ensuring that the generated mappings 

satisfy the constraints, need more elaboration. To form the 

initial population and introduce new immigrants, new 

mappings are generated. The higher the score of these 

mappings, the faster the search algorithm can converge. 

Algorithm 1 is designed to fulfill this purpose. It is an iterative 

algorithm which starts by matching a random S1 attribute to a 

random S2 attribute, to which it can match. Then, at each 

iteration, it picks an unmatched S1 attribute that is related to 

those attributes previously matched in S1 and matches it to 

another unmatched S2 attribute that is also related to the 

previously-matched attributes in S2. The pair of attributes are 

selected such that (a) they are permitted to match and (b) their 

two relations with their predecessors (previously-matched 

attributes) are closest to each other compared to the 

corresponding relations of any other pair of unmatched 

attributes from S1 and S2 respectively. This criterion ensures 

the relatively high score desired for the generated mapping. If 

no such pair is found, then any two random unmatched 

attributes are selected, one from each schema, and matched 

together, if they are permitted to match. This process 

continues until all the n’ attributes have been matched. Note 

that if the structure-level features are not involved in the 

matching phase (i.e., no graphs are involved), Algorithm 1 

assumes that all the attributes are unrelated. 

Because of the way the number of dummy attributes is 

selected, all the mappings generated by Algorithm 1 will have 

km≥ *
ˆ

mk . When monotonic scoring functions are used, although 

the best mapping should have km=
*

ˆ
mk , mappings of 

intermediate generations having km>
*

ˆ
mk  are kept in the 

population if they have relatively high scores because they can 

later result in finding better mappings having km=
*

ˆ
mk  (i.e., 

through mutations and crossovers). 

Algorithm 2 is used to generate two child mappings, c1 and 

c2, from two parent mappings, m1 and m2, after crossing them 

over, while algorithm 3 generates a child mapping, c, from a 

parent mapping, m, after mutating it. 
 

Algorithm 1: Generate_New_Mapping (m) 

Mi: set of matched Si attributes, i∈[1,2] 

Li: set of S2 attributes permitted to match xi, i∈[1,n’] 

R1,i: sum of edge weights from xi to all xj∈M1 averaged 

over the 16 feature graphs of S1, i,j∈[1,n’], i≠j 

R2,i: sum of edge weights from yi to all yj∈M2 averaged 

over the 16 feature graphs of S2, i,j∈[1,n’], i≠j 

1- M1={}; M2={}; 

2- for each iteration t 

3- if |M1|=n’ 

4- return m; 

5- Find an unmatched S1 attribute xit 
and an unmatched 

S2 attribute yjt
 such that yjt

∈Lit
, R1,it

>0, R2,jt
>0, |R1,it

-

R2,jt
|≤|R1,u-R2,v|, u≠it, v≠jt, xu∉M1, yv∉M2; 

6- if such pair (xit
,yjt

) does not exist 

7- Let xit
 be any random unmatched S1 attribute, yjt

 

be any random unmatched S2 attribute, yjt
∈Lit

; 

8- Let m(it)=jt;  

9- Add xit
 to M1;  

10- Add yjt
 to M2;  

11- Remove yjt
 from Lu, u≠it; 

 

Algorithm 2: Make_Crossover (m1, m2) 

ci : the ith child mapping to be generated, i∈[1,2] 

1- Copy m1 into c1; 

2- Randomly divide c1 into two parts; 

3- Keep the first part of c1 unchanged; 

4- For the second part, keep the matches for the 

constrained S1 attributes unchanged; 

5- Reorder the matching S2 attributes for the 

unconstrained S1 attributes in the second part of c1 to 

follow the ordering of m2; 

6- Generate c2 in the same way as c1 after switching the 

roles of m1 and m2; 

7- return {c1 , c2}; 
 

Algorithm 3: Make_Mutation (m) 
c : the child mapping to be generated 

1- Copy m into c; 

2- Pick two random unconstrained S1 attributes xi and xj; 

3- Swap c(xi) and c(xj); 

4- return c; 
 

5.2 Integration with other matching techniques 
 

We allow the combination of any number of matching 

techniques, whenever applicable, to improve the quality of the 

generated mappings. In particular, we follow an aggregation 

approach similar to the COMA framework [6], where an 

overall score is used to capture the scores of each individual 

matcher. In this scenario, each candidate mapping, generated 

by the genetic algorithm, is passed to the individual matchers, 

which return their individual scores. The genetic algorithm 

then calculates a weighted average of the individual scores 

and uses it as the fitness value. The overall scoring function 

can either be monotonic or non-monotonic, depending on 

whether the aggregated individual scoring functions are 

themselves monotonic or non-monotonic respectively. 

As an example of a non-usage-based matcher, we 

implemented a data type matcher to assess the value of 

combining it with usage-based matchers. The data type 
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information is typically available with each schema or can be 

inferred from the query log to a certain degree of accuracy 

(See Section IV-A-2). Moreover, the data types used by 

different DBMSs are usually very similar. Therefore, in 

practice, we would always be able to combine this matcher 

with our usage-based matchers. The data type matcher (DT) 

considers only three classes of data types: numeric, string and 

datetime. For numeric data types it considers the scale and 

precision properties, and for the string data types it considers 

the length property. It uses a data type compatibility matrix to 

calculate a score Scoredt for each match between two 

attributes from S1 and S2 respectively. 

The monotonic and non-monotonic scoring functions used 

for the DT matcher are exactly similar to (4) & (5) 

respectively in Section IV-B, except that Scoredt is used 

instead of Scoreeu. The monotonic scoring function is: 
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while the non-monotonic scoring function is given by 
 

 (7)    ))))(,(1(1(
1

,0max)(
1









−−= ∑

=

mk

i

iidti

m

n

dt pmpScore
k

mf α  

 

 VI. EXPERIMENTS AND RESULTS 
 

A. Experimental setup 
 

We build upon the bookstores example described in Section 

III. We used the Wisconsin implementation of the TPC-W 

benchmark [17] to which we added a query logger 

component. After each TPC-W run, two query logs are 

generated for the X-Books and the Y-Books schemas 

respectively. The attributes which do not appear in the query 

logs were not included in these two schemas. Normally, all 

schema attributes would be queried, but this is not the case for 

TPC-W since it only focuses on certain aspects of the 

bookstore business. For example since the integration part 

with the banking system is not considered, some attributes of 

the credit card transactions do not appear in the query log.  

The TPC-W benchmark specifies three types of workload: 

browsing mix (B), shopping mix (S), and ordering mix (O). 

Read-only web interactions constitute 95%, 80%, and 50% in 

browsing, shopping, and ordering mixes respectively, while 

the remaining percentage is for read-write web interactions. 

We generated query logs for both schemas corresponding to 

the three workload mixes. In each run, 30 emulated browsers 

submit requests to the bookstore application simultaneously 

for about 3 hours. The size of the generated query logs range 

from 10,120 to 17,819 queries. These sizes are large enough 

to guarantee that the logs are representative of the workload. 

The logged queries are mostly SPJGO queries with a few 

SPJGO-N queries. In the TPC-W implementation, two 

additional tables were used to capture the shopping cart 

information. We added them to the schemas of X-Books and 

Y-Books, such that the total number of attributes in each 

schema became 44 and 46 respectively. The correct number of 

matching attributes is 41. 

In the experiments, we use the average F-measure (f) metric 

to measure the average quality for all the mappings generated 

with the same highest score under varying conditions. We 

study the effects of combining several matchers, changing the 

quality of attribute names (when schema-based techniques are 

combined with usage-based techniques), changing the types of 

usage relationships used, changing the parameter 
*

ˆ
mk  (when 

monotonic scoring functions are used), changing the 

parameter g (when non-monotonic scoring functions are 

used), and using query logs of the same workload type versus 

the two most different types (BB and BO). We compare our 

technique to a hypothetical optimal matcher assumed to 

always return the correct mapping as one of its highest-score 

mappings. Note that because some attributes may be 

indistinguishable to the matcher (e.g. they have the same data 

type when only a data type matcher is used), some incorrect 

mappings may have the same score as the correct mapping. 

Thus, f values for that optimal matcher are not necessarily 1. 

For the comparison with established techniques, we use the 

Similarity Flooding (SF) algorithm [13], which is available as 

open source. We could not compare our technique to that of 

[11] (being also independent from the attribute name 

information) because it only considered matching individual 

tables rather than complete schemas as in our case. 

In the graphs, we use “m” and “n” to denote monotonic and 

non-monotonic scoring functions respectively. The weights 

for relationship types, wl, were set to 1/16, l∈[1,16]. The 

number of iterations, N_Iterations, for which the highest-score 

mapping should remain unchanged before the genetic 

algorithm stops (stopping criterion), was set to 500. The initial 

population size was set to 50. Throughout the experiments, the 

average total number of iterations required was 2305. 
 

B. Effect of combining different matchers 
 

In this experiment, we show the impact of combining three 

basic matchers, namely SLUB, DT and ELUB, according to 

eight different combinations of weights, including the cases 

where they are used individually, in pairs, or all three 

together. For monotonic scoring functions, a correct estimate 

*
ˆ

mk  for km* is used, and for non-monotonic scoring functions, 

the parameter g is set to 0.2 (Recall from Section IV-B that g 

controls how mappings are rewarded/penalized). 

Figures 2 and 3 show the f values when the eight 

combinations of matchers are used. The best results are 

obtained when SLUB is combined with DT, where the f value 

reaches up to 0.8. This figure is very close to what the optimal 

matcher could achieve: 0.83. When used individually, SLUB 

achieves higher accuracy than DT and ELUB, as its f value 

reaches 0.7 when similar query logs are used (B and B, or 

simply BB) and 0.5 when the most different query logs are 

used (B and O, or simply BO). We also observe that using a 

non-monotonic scoring function makes the matcher more 

sensitive to the discrepancies between the two query logs 

compared to the case when a monotonic scoring function is 

used. This was expected because of the drawback of non-

monotonic scoring functions, discussed in Section IV-B. 
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ELUB proved to be more useful with the BO query logs as it 

improved the accuracy when combined with each of DT and 

SLUB separately (e.g. (1,0,0) vs (.6,0,.4)). However, when 

combined with them together, the accuracy was not 

significantly improved (e.g. (.6,.4.0) vs (.3,.3,.3)). In general, 

the value ELUB can add in a combination of matchers 

depends on the discriminative power of the other matchers 

and the richness of the query logs in terms of element-level 

features. When used separately, ELUB gave almost the same 

accuracy both with BB and BO query logs. The reason is that 

the same element-level features are preserved in both types of 

query logs. 
 

C. Effect of the quality of attribute names 
 

In this experiment, we compare the matching quality of the 

usage-based approach to that of SF. We study the impact of 

the attribute naming quality when the following combinations 

of matchers are used: SF, SLUB, (SLUB, SF), (SLUB, DT, 

ELUB), and (SLUB, DT, ELUB, SF). When used in 

combination, matchers are assigned equal weights. To vary 

the quality of attribute names, we considered that a percentage 

of the attribute names of the target schema are random strings; 

i.e., they cannot be matched to the attributes of the source 

schema, while the remaining percentage (pExact) represent 

exact matches to those of the source schema. 

Fig. 4 shows the f values when pExact varies from 0% to 

100%. The monotonic scoring function is used and the query 

logs of both schemas are considered to be different (BO). The 

f value increases as pExact increases only when SF is used. 

Otherwise, it remains constant, since SF is the only matcher 

that depends on the attribute names. The f value for SF is 

lower than those of SLUB and (SLUB, DT, ELUB) when 

pExact is less than 20% and 60% respectively. This reflects 

the superiority of the usage-based technique when the 

attribute names are unreliable: the case where the usage-based 

technique is needed the most. We also note that if similar 

query logs were used (BB), the previous two figures would 

have been 60% and 60% respectively, since SLUB performs 

better with BB query logs (See Fig. 2). Furthermore, as long 

as pExact is less than 80%, the combination of all matchers 

provides the highest accuracy compared to any single matcher 

or subset of matchers. This shows how schema-based and 

usage-based matchers can reinforce each other when used in 

combination. When pExact is 80% or greater (almost the ideal 

case for SF), SF performs the best because the attribute name 

information becomes highly reliable, making the combination 

with other matchers counter-productive. We finally note that 

SF manages to find some correct matches even when all 

attribute names do not match (pExact=0%) because SF does 

not solely depend on attribute names, but it also exploits the 

structural similarities in the two schemas. 
 

D. Effect of usage relationship types 
 

In this experiment, we study the impact of using a subset of 

the usage relationship types as opposed to using all of them. 

We ranked the relationship types based on the connectivity of 

their source and target graphs by counting the number of 

edges in both graphs for each relationship type. This ranking 

(Table III) gives an indication of the discriminative power of 

the different types of relationships. Fig. 5 shows the f values 

when SLUB is used with only the top R relationship types, 

where R is varied from 1 to 16. The relationship types are 

always given equal weights.  

We use the monotonic scoring function and consider both 

BB and BO query logs. The ranking of relationship types is 

considered both when it is descending in the total number of 

edges (as in Table III) and when it is ascending in that 

number. As expected, the figure shows that, in general, the 

more relationship types are used, the more effective the 

matcher is. This is because each type of relationships may 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(1, 0, 0) (.6,.2,.2) (.6,.4,0) (.6,0,.4) (.3,.3,.3) (0,.5,.5) (0,1,0) (0,0,1)

Matcher weights (SLUB, DT, ELUB)

f

optimal m n

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(1, 0, 0) (.6,.2,.2) (.6,.4,0) (.6,0,.4) (.3,.3,.3) (0,.5,.5) (0,1,0) (0,0,1)

Matcher weights (SLUB, DT, ELUB))

f

optimal m n

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

pExact (%)

f

(SF) (SLUB) (SLUB,SF)

(SLUB,DT,ELUB) (SLUB,DT,ELUB,SF)

 

Fig. 2 Effect of combining matchers (BB 

query logs) 
Fig. 3 Effect of combining matchers (BO 

query logs) 
Fig. 4 Effect of varying pExact 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of usage relationship types (R )

f

BB-desc BB-asc BO-desc BO-asc

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

Error in estimate of km* (%)

f

optimal-BB m-BB optimal-BO m-BO

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
g

f

optimal-BB n-BB optimal-BO n-BO

 

Fig. 5 Effect of usage relationship types Fig. 6 Effect of varying 
*

ˆ
mk  Fig. 7 Effect of varying g 

9



provide additional evidences as to which attributes match. 

Also, when the descending ranking is used, f converges to its 

highest values much faster than the ascending case, as the 

most discriminative types of relationships are considered first 

in the case of the descending ranking. 
 

TABLE III. RANKING OF USAGE RELATIONSHIPS  

Usage relationship type Total no. of edges Rank 

select-select 339 1 

where-select 91 2 

select-where 91 3 

where-where 62 4 

orderby-select 18 5 

select-orderby  18 6 

groupby-groupby  17 7 

groupby-select 17 8 

select-groupby 17 9 

orderby-where 10 10 

groupby-where 10 11 

where-orderby 10 12 

where-groupby 10 13 

orderby-orderby 9 14 

orderby-groupby 5 15 

groupby-orderby 5 16  
 

E. Effect of the parameter 
*

ˆ
mk  

 

Fig. 6 shows the f values when the matcher uses a 

monotonic scoring function and the error in the estimate 
*

ˆ
mk  

varies from 0% to 50%. The matcher is a combination of 

SLUB, DT and ELUB with weights 0.6, 0.2 and 0.2 

respectively. Interestingly, the accuracy does not sharply 

deteriorate as the error in
*

ˆ
mk increases. For instance, the f 

value for a 25% error is almost 0.6, which is very reasonable, 

considering that 25% error means that the matcher is 

explicitly instructed to return 25% fewer matches than the 

correct number of matches. Fig. 5 also confirms that a 

matcher using a monotonic function is not very sensitive to 

discrepancies in the query logs, since the BB and BO curves 

are not far from each other. For the optimal matcher, the BB 

and BO curves coincide because, in our experiment setting, 

the B and O query logs, are similar in terms of which 

attributes are indistinguishable to the matcher and which 

attributes are not.  
 

F. Effect of the parameter g 
 

Fig. 7 shows the effect of varying the parameter g on the f 

values when the matcher uses a non-monotonic function. The 

specific matcher used is also a combination of SLUB, DT and 

ELUB with weights 0.6, 0.2 and 0.2 respectively. As 

expected, the matcher performs better with BB query logs 

compared to BO query logs. In the former case, the f values 

remain at their peak for a big range of g (0.2-0.7), while in the 

later case they peak when g is less than 0.3. Generally, a small 

g can result in penalizing correct mappings, while a large g 

can result in rewarding erroneous mappings, which leads in 

both cases to a lower accuracy. 
 

VII. CONCLUSIONS  

 

We introduced a new class of techniques, usage-based 

schema matching, where the usage information in the query 

logs is used to find correspondences between the attributes of 

two schemas. Our experimental study demonstrated the 

effectiveness of the proposed technique and the value of 

combining it with other matchers, including the Similarity 

Flooding algorithm. The results showed that when the 

attribute name information is of low quality, usage-based 

techniques outperform schema-based techniques. However, 

when combined together, the matching quality improves on 

average compared to using either technique in isolation. 

While this paper was focusing on relational schemas and 

SQL, a natural next step would be to investigate the 

applicability of our approach in an XML context with a query 

language like XQuery. Furthermore, building a repository of 

query logs obtained from real world systems can be very 

useful in studying the effectiveness of any technique that 

relies on query log analysis, such as ours. Finally, it would be 

interesting to study the possibility of using the query logs to 

discover Global-As-View (GAV) or Local-As-View (LAV) 

mappings, where a table in one schema is expressed as a view 

over the other schema. 
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