
Usage-Based Schema Matching
*

Hazem Elmeleegy
1
, Mourad Ouzzani

2
, and Ahmed Elmagarmid

1, 2
1
Department of Computer Science

2
Cyber Center

Purdue University, West Lafayette, IN
{hazem,mourad,ake}@cs.purdue.edu

Abstract— Existing techniques for schema matching are

classified as either schema-based, instance-based, or a

combination of both. In this paper, we define a new class of

techniques, called usage-based schema matching. The idea is to

exploit information extracted from the query logs to find

correspondences between attributes in the schemas to be

matched. We propose methods to identify co-occurrence patterns

between attributes in addition to other features such as their use

in joins and with aggregate functions. Several scoring functions

are considered to measure the similarity of the extracted

features, and a genetic algorithm is employed to find the highest-

score mappings between the two schemas. Our technique is

suitable for matching schemas even when their attribute names

are opaque. It can further be combined with existing techniques

to obtain more accurate results. Our experimental study

demonstrates the effectiveness of the proposed approach and the

benefit of combining it with other existing approaches.
*

I. INTRODUCTION

Schema matching has long been one of the most important,

yet difficult, problems in the area of data integration. With the

exploding number of information systems, the need for

schema matching solutions is growing. In life sciences,

information integration is becoming a bottleneck limiting

what scientists can accomplish. Businesses are relying on

integration more than ever before. In disaster recovery

situations, several entities and authorities need to rapidly

exchange information. Schema matching is a key component

in all such applications. Moreover, many of today’s

integration tasks have to cross country boundaries, thus

adding a new dimension to this vexing challenge.

The problem of schema matching is essentially to find

correspondences (matches) between the attributes of two

schemas. The set of generated matches is collectively referred

to as a mapping between the schemas. Much attention has

been paid to this problem in the literature, and many

techniques have been proposed, e.g., [7,10,11,12,12,13].

These techniques are fundamentally divided into two classes

based on the source of information they exploit to make their

matching decisions. On one hand, schema-based techniques

rely on the metadata available for the schemas in terms of

attribute names, descriptions, data types, domains, and

integrity constraints. Instance-based techniques, on the other

hand, rely on the characteristics of the data instances such as

* This work was supported by Lilly Endowment, NSF-ITR 0428168,

and US DHS PURVAC.

their format, distribution, entropy, and correlation with

instances of other attributes. Many systems have also been

proposed to utilize a combination of those techniques [6,7,12].

The instance-based technique, proposed in [11], tackled the

problem of schema matching with opaque attribute (or

column) names, i.e. when attribute names are unreliable for

matching purposes. This is a very realistic case, especially

when matching multi-lingual schemas. However, the authors

only showed how their technique can match individual tables

and not complete schemas.

In this paper, we propose a new technique for schema

matching, which does not fall in either of the previous two

classes, but rather defines a new class of its own, which we

refer to as usage-based schema matching. The proposed

technique exploits the usage information of the attributes in

the query logs to find matches, in contrast to relying on the

schema information or the data instances. This may be the

only option for schema matching if the information needed by

the two other techniques is not available or not reliable

enough to achieve good matching quality. The proposed

technique first identifies co-occurrence patterns between

attributes and additional features, such as their use in joins and

with aggregate functions. Then, it employs a genetic

algorithm to find the highest-score mappings according to the

scoring function used to measure the similarity between the

features of the matching attributes.

Our technique is suitable for matching schemas even when

their attribute names are opaque or when they have different

layouts. It is applicable to match complete schemas, rather

than individual tables. In addition, our technique can be

combined with other matching techniques using the

combination methods proposed in the literature (e.g., [6]) to

obtain higher-quality matches. In this paper, we

experimentally verify the effectiveness of the usage-based

technique, and show that when combined with simple

matchers like a data type matcher or established matching

techniques like the Similarity Flooding algorithm [13], the

generated matches indeed reach high degrees of accuracy.

The paper makes the following contributions:

1. The description of a new class of techniques for matching

schemas based on the usage of their attributes in the query

logs. In particular, we describe details of two usage-based

matchers (SLUB and ELUB).

2. A prototype implementation of the proposed techniques,

which employs a genetic algorithm to find the highest score

mappings.

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

3. An extensive experimental study showing the effectiveness

of the usage-based schema matching technique and the

benefit of combining it with other techniques, including the

Similarity Flooding algorithm especially when attribute

names are opaque.

In Section II, we discuss the related work. Section III

presents the example that will be used throughout the paper.

The usage based technique is described in Section IV, while

the implementation issues are discussed in Section V.

Experiments and their results are presented in Section VI, and

finally Section VII concludes the paper and suggests

directions for future work.

II. RELATED WORK

Schema matching has been extensively studied over the past

two decades (See [15] for a comprehensive literature survey

until 2001). Cupid [12] combines element-level and structure-

level schema-based techniques to perform schema matching.

Element-level techniques focus on the properties of each

attribute in isolation, while structure-level techniques consider

relationships between attributes. LSD [7] is an extensible

framework, which employs several schema-based and

instance-based matchers, and uses machine learning

approaches to train and combine them. COMA [6] is another

framework for combining matchers, providing several

strategies for aggregating their results. Madhavan et al. [12]

propose the use of a corpus of previously matched schemas to

match a pair of new schemas. Using a corpus of schemas is

also considered by He et al. [10]. However, their focus is on

deep web applications and they follow a holistic approach to

simultaneously find mappings between all the schemas of the

corpus. Kang et al. [11] propose using mutual information

between attributes to match tables of schemas with opaque

attribute names and data values. Similarity Flooding [13] is a

fixpoint computation algorithm for matching schema graphs,

aided by an attribute name matcher. All of these previous

works did not consider using the query logs for schema

matching. Therefore, our work can be seen as either

complementary to them as it can be combined with such

techniques within the same matching framework or the only

alternative if the information required by the previous

techniques is not available or unreliable.

Much work has been focused on generating more complex

types of mappings than finding simple one-to-one attribute

correspondences. The Clio system [1,9] generates SQL-like

mappings based on the attribute correspondences. iMap [5]

focuses on finding complex relations between attributes in

both schemas such as price=rate*(1+tax). More recently,

Bohannon et al. [2] introduced contextual schema matching,

in which a match between a pair of attributes is valid only

when certain conditions are met in the data instances. Warren

et al. [18] proposed a method to find the relation between

attributes in one schema and substrings of multiple attributes

in the second schema. We believe that this body of work can

benefit from our usage-based approach, since more evidence

about these complex relations can be found in the query logs.

Finally, the idea of analyzing query logs has been used

extensively in the area of self-tuning databases (e.g. [3,4]).

III. THE BOOKSTORES EXAMPLE

As our motivating example, we consider a fictitious

company: AllBooks Inc. AllBooks mission is to provide

online access to bookstores all over the world. One of their

biggest challenges is how to match the schemas of the

numerous bookstores to their own schema; so that the

AllBooks web application can seamlessly forward queries to

and retrieve answers back from each bookstore. The schemas

of the bookstores have different structures, are written in

different languages, and, in many cases, the table and attribute

names are not easily interpretable. Moreover, the owners of

the bookstores were willing to share their schemas, but not to

provide labor for manual schema matching. AllBooks offered

to collect the schemas of the bookstores, and provide each of

them with a software tool that analyzes its query log such that

the output of the analysis is sent back to AllBooks to help in

the schema matching process. The rationale is to use a usage-

based schema matching technique whenever the schema-

based information is of low quality and cannot be relied on.

Fig. 1 shows an example of the schemas of two bookstores

(X-Books and Y-Books), that AllBooks had to deal with.

Although different in layout, the two schemas cover the same

information about the bookstore domain. In particular, they

cover information about books, book authors, customers, and

ordering history. The attribute names in the figure are shown

to be easily interpretable, only for illustration purposes. The

two schemas were derived from the TPC-W benchmark [16],

which gives the specifications for building an online

bookstore. The X-Books schema is a reduced version of the

TPC-W schema, while the Y-Books schema is a modified

version of the X-Books schema. We will be referring to this

example throughout our discussion.

IV. USAGE-BASED SCHEMA MATCHING

The goal of the usage-based schema matching technique is

to exploit similarities in the query patterns to match attributes,

which seem to play the same role in their respective databases.

We are not claiming that the query patterns in the same

domain will always be similar. However, like schema-based

techniques, which will only be effective when the attribute

names share some similarities, usage-based techniques will be

most effective when the query patterns are close to each other;

a requirement that is likely to be met in many situations. For

example, as in Section III, users of many bookstores are

expected to issue similar queries because the semantics of

these queries is entailed by the business activities rather than

by the specifics of the schema design. The same argument

applies to other domains like healthcare, finance, and

scientific databases.

Our proposed technique has two main phases: feature

extraction and matching. The feature extraction phase collects

information from the query logs characterizing the attributes’

roles and their interrelationships. The matching phase

examines several potential mappings, and assigns a score for

2

each one of them. The scores are based on how well the

features of the corresponding attributes match. The matching

phase terminates by reporting the highest-score mapping (or

mappings).

A. Feature extraction

During the feature extraction phase, the query log of each

schema is scanned to collect both structure-level and element-

level features. The structure-level features are used by a

Structure-Level Usage-Based matcher (SLUB), whereas the

element-level features are used by an Element-Level Usage-

Based matcher (ELUB).

1) Structure-level features: The structure-level features

capture the usage relationships between attributes of the same

schema. An attribute A appearing in a query Q would

normally have a role in defining Q’s answer. A can be part of

the answer (A occurs in the select clause), or it can have a

filtering role (A appears in the where or having clauses), a

grouping role (A occurs in the group by clause), or an

ordering role (A occurs in the order by clause). Furthermore,

if two attributes co-occur in the same query, they potentially

have a usage relationship whose type is defined by the role of

each of them in defining the query’s answer. However, in

certain complex queries, we may not consider them to be

related, as will be described shortly.

Since we are considering four possible roles for the

attributes, this results in 16 different types of possible

relationships. The relationship types are referred to as select-

select, select-where, select-groupby, select-orderby, where-

select, etc. Note that with this naming convention, the term

“where” is used to represent both the where and having

clauses.

Based on the 16 types of relationships, we build 16 graphs

Gl(V,El), l ∈ [1,16], where V represents the set of attributes

and El represents the set of relationships of the l
th

 type

between the attributes. The weights on the edges of the graph

are proportional to the frequency of occurrence of their

corresponding relationship in the query log. They are

calculated as follows. All weights are initially zero. For each

query in the query log, all the relationships between the

query’s attributes are identified, and the weights of their

corresponding edges in the graphs are incremented by one.

After scanning the whole query log, all the weights in the

graphs are normalized by dividing each of them by the largest

weight in its own graph. This final normalization step ensures

that the graphs’ weights are independent of the size of the

query log.

If we denote the adjacency matrix of Gl(V,El) by al, then we

only need to maintain the lower triangular matrix of al, l ∈

[1,16], since the upper triangular matrices can be induced. For

example, the upper triangular matrix for the select-select

graph is identical to the transpose of its own lower triangular

matrix. Also, the upper triangular matrix for the select-where

graph is identical to the transpose of the lower triangular

matrix for the where-select graph and vice versa.

We now describe the three classes of queries we consider,

and how to identify the usage relationships in each of them:

1. SPJGO: Single-block Select-Project-Join queries with

optional grouping and/or ordering.

2. SPJGO-UEI: SPJGO queries with union, except and/or

intersect.

3. SPJGO-N: SPJGO queries with nested subqueries.

For SPJGO queries, the identification process is

straightforward. Each pair of attributes in the query has a

relationship whose type depends on the two clauses where

each of them occurs. For SPJGO-UEI queries, relationships

are identified separately for each subquery because the

attributes in one subquery do not affect the result of another

subquery. Finally, for the SPJGO-N queries, relationships are

first identified separately for each block, i.e., the blocks of the

outer query and each inner subquery. Then, more relationships

are identified between attributes occurring in different blocks.

In particular, if the inner subquery is in the where or having

clauses of the outer query, then its attributes occurring in the

select, where and having clauses have a direct filtering role

Order_Line

OL_O_ID

OL_I_ID
OL_QTY

Item

I_ID
I_TITLE

I_A_ID
I_PUB_DATE
I_SUBJECT

I_RELATED[1-5]
I_THUMBNAIL
I_STOCK

Address

ADDR_ID
ADDR_STREET1

ADDR_STREET2
ADDR_CITY
ADDR_STATE

ADDR_ZIP
ADDR_CO_ID

Orders

O_ID

O_C_ID
O_DATE
O_BILL_ADDR_ID

O_SHIP_ADDR_ID

Customer

C_ID

C_UNAME
C_PASSWD
C_FNAME

C_LNAME
C_ADDR_ID

C_DISCOUNT

Country

CO_ID

CO_NAME

Author

A_ID
A_FNAME

A_LNAME

CC_XACT

CX_O_ID
CX_TYPE

Order_Line

OL_O_ID
OL_I_ID

OL_QTY
O_C_ID
O_DATE

O_BILL_ADDR_ID
O_SHIP_ADDR_ID

Item

I_ID

I_TITLE
I_PUB_DATE
I_RELATED[1-5]

I_THUMBNAIL
I_STOCK

A_FNAME
A_LNAME

Address

ADDR_ID
ADDR_STREET1

ADDR_STREET2
ADDR_CITY
ADDR_STATE

ADDR_ZIP
CO_NAME

Orders

O_ID
CX_TYPE

Customer

C_ID
C_UNAME

C_PASSW D
C_FNAME
C_LNAME

C_ADDR_ID
C_DISCOUNT

Item2Subject

IS_I_ID
IS_S_ID

Subject

S_ID

I_SUBJECT

(a) X-Books Schema

(b) Y-Books Schema

Fig. 1 Schemas of the bookstores example

3

in the result of the outer query, and therefore they are

considered to be related to all the attributes occurring in the

outer query as if they were occurring in its own where clause.

This is unlike attributes occurring in the group by and order

by clauses of the inner subquery, which do not have any direct

role in the result of the outer query. If the inner subquery is in

the from clause of the outer query, we follow the same

strategy except that the attributes occurring in the select

clause of the inner subquery are not considered to be related to

those of the outer query.

Note that equivalent queries, having different query forms,

may exist in the query logs of both schemas. If the extracted

features from these forms are significantly different, the

matching quality would be negatively affected. However, the

following example shows how the fine-grained usage

relationships we identify are mostly preserved across different

query forms.

Example 4.1 This example shows three equivalent queries on

the X-Books schema for finding book titles whose author’s

last name is ‘Gray’.

Q1: select I_TITLE from Item, Author
 where I_A_ID=A_ID and A_LNAME=‘Gray’

Q2: select I_TITLE from Item
 where I_A_ID in(select A_ID from Author
 where A_LNAME=‘Gray’)

Q3: select I_TITLE
 from Item, (select A_ID from Author
 where A_LNAME=‘Gray’)
 where I_A_ID=A_ID

The identified relationships (or contributions) of the above

three queries to the select-where relationship type are shown

in Table I. The three contributions are almost identical except

that the relationship between A_ID and A_LNAME is identified

for Q2 and Q3 because it occurs in their subqueries, but not

for Q1. While this discrepancy is not considered to be large,

there are cases where the discrepancy between the

contributions of two equivalent queries is larger. Consider the

following two queries Q4a and Q4b, which use a parameter

@list to together perform the same task as any of Q1, Q2 or

Q3.

Q4a: @list = select A_ID from Author
 where A_LNAME=‘Gray’
Q4b: select I_TITLE from Item
 where I_A_ID in @list

The contribution of Q4a and Q4b (collectively referred to as

Q4) is shown in Table I. It has three differences from that of

Q1 and two differences from that of Q2 and Q3. One

approach to reduce this discrepancy is to identify relationships

at the transaction-level. That is to find queries belonging to

the same transaction and relate their attributes together. In this

example, Q4a and Q4b can be considered to be in the same

transaction. We will then determine that I_TITLE is part of

the final result of the whole transaction and A_LNAME has a

filtering role in it, so the two attributes should have the select-

where relationship. Currently, our implementation does not

take transactions into account. �

2) Element-level features: Element-level features relate to the

way each attribute is used in the query log regardless of the

other attributes. For instance, some real-world schemas do not

specify which attributes are the primary keys and which ones

are the foreign keys. In such cases, the element-level feature

extractor infers that an attribute is potentially a key attribute

(primary or foreign) if it occurs in a join predicate. This

inference becomes unnecessary if the same information could

be directly extracted from the schema. Additionally, the

extractor collects information about the usage of attributes

with aggregate functions. We consider five such functions and

divide them into three equivalence classes: {count}, {min,

max} and {sum, avg}. For each attribute, we record whether it

was used or not with each of these three classes of aggregate

functions. A useful observation is that a potentially key

attribute is highly unlikely to match an attribute that is

aggregated with either sum or avg. It is also possible that the

extractor infers information about the data types of the

attributes based on the operations, functions, and literals they

are used with, or compared to, in the query logs. However,

since the data type information is typically available in the

schemas, it would be pointless to infer it from the query log.

Therefore in our experiments, we limited the element-level

usage-based features to the key and aggregate information

explained above.

B. Matching and scoring functions

The matching problem can be stated as follows. Given two

schemas S1 and S2, where S1 has n1 attributes {x1, x2…xn1} and

S2 has n2 attributes {y1, y2…yn2}, and given the features

extracted for each of them; find a mapping m* from the

attributes of S1 to those of S2, which gives the highest score

for a particular scoring function. Any mapping m should

provide the following information.

1. The number of matching attributes, denoted by km.

2. The identity of the km matching attributes from each

schema, denoted by {xp
1
, xp

2
…xp

km

} for S1 and {yp
1
,

yp
2
…yp

km

} for S2.

3. The actual matches connecting each of the km attributes in

S1 to only one of the km attributes of S2, i.e., m(xp
i
)=yq

j
, or

equivalently m(pi)=qj.

The mapping is called one-to-one mapping if n1=n2=km. It is

called onto mapping if n1=km and n2 ≥ n1. Finally, it is called

partial mapping if km < min(n1,n2), which is the most general

case. The size of the space of all possible mappings in the

most general case is given by ∑
=

),min(

0

21

21 !
nn

k

m

n

k

n

k

m

mm
kCC .

TABLE I. CONTRIBUTION OF THE QUERIES OF EXAMPLE 4.1 TO THE SELECT-

WHERE RELATIONSHIP TYPE

select-where A_ID A_LNAME I_A_ID I_TITLE

A_ID - Q2,Q3,Q4 - -

A_LNAME - - - -

I_A_ID - - - -

I_TITLE Q1,Q2,Q3 Q1,Q2,Q3 Q1,Q2,Q3,Q4 -

4

The challenge of formulating an effective scoring function

to compare between different mappings has been addressed in

[11]. The key idea is to match two tables by building a

complete graph for the attributes of each table, where the

weight on each edge equals the mutual information between

its end nodes. The table matching problem then reduces to

graph matching. The authors proposed two possible scoring

functions to measure the distance between a pair of graphs

given a certain mapping. In particular, they classified the

scoring functions into monotonic and non-monotonic in km,

and they proposed an example for each class. Monotonic

functions are not suitable for automatically estimating the

correct number of mappings km*. If km* is not known and a

monotonic function is used, the matching algorithm will

conclude that either no attributes match (km*=0), or that the

maximum number of attributes match (km*=min(n1,n2)),

depending on the direction of monotonicity. Clearly, this is

not the desired behavior for the matching algorithm. Thus, if

the matching algorithm uses a monotonic scoring function, it

has to be provided with a user estimate
*

ˆ
mk for km*. This way, it

will only consider mappings with km=
*

ˆ
mk . However, if it uses

a non-monotonic function, it might be able to automatically

estimate the correct value of km*, as we will explain shortly.

We adapt the scoring functions proposed in [11] to fit our

context. Firstly, for the structure-level features, we have 16

pairs of graphs rather than one pair, so we assign a weight wl

for the graphs representing the usage relationship of the l
th

type, where∑
=

=
16

1

1
l

lw . Secondly, the scoring functions are

adjusted to fall in the range [0,1] to make sure they are

comparable to each other when more than one matcher is

combined. Thirdly, for the same reason, the goal should be to

maximize all the scoring functions, rather than a mixture of

maximize and minimize.

We will now present the scoring functions used by the

SLUB and ELUB matchers. We denote the adjacency

matrices of the structure-level feature graphs of S1 and S2 as al

and bl respectively, l ∈ [1,16].

Structure-level monotonic scoring function

)1()])()][([]][[(1)(
16

1 1 1

2
 pmpmbppa

r

w
mf

l

k

i

k

j

jiljil

l

lm

su

m m

∑ ∑∑
= = =

−−=

 This function uses the Euclidean distance to measure the

dissimilarity between the 16 feature graphs of S1 and their

corresponding graphs of S2 given a certain mapping m.

Obviously, as km increases, the dissimilarity can potentially

increase, and consequently the score decreases. Therefore,

when the estimate
*

ˆ
mk is given to the matcher, all occurrences

of km in (1) should be replaced by
*

ˆ
mk . The variable rl is an

upper bound to the value of the square root, which guarantees

that the score does not exceed 1. Since the elements of al and

bl are normalized, i.e., they are less than or equal to 1, the

upper limit for the summation under the square root is km
2
.

Since al and bl represent sparse graphs, a tighter upper bound

for that summation can be (tl1
+tl2

)
2
, where tl1

 and tl2
 are the

sums of nonzero elements in al and bl respectively. Therefore

rl is given by

),min(
21 llm ttk + .

Structure-level non-monotonic scoring function

, (2))()(
16

1 1 1

∑ ∑∑
= = =

Ψ=
l

k

i

k

j

lij

l

ln

su

m m

m
r

w
mf

where

())3(
,)]()][([]][[1

0)]()][([0]][[,0
)(

otherwise pmpmbppa

pmpmb and ppa
m

jiljillij

jiljil

lij





−−

==
=Ψ

α

This function uses the absolute difference between the

corresponding elements in al and bl given a certain mapping m

to measure the dissimilarity between the graphs. When both

elements are zero (no edge in both graphs), nothing is

contributed to the score. However, if at least one of them is

non-zero, then the mapping is either rewarded or penalized

according to the control variable αlij. To explain how αlij is

calculated, let βlij be the value multiplied by αlij in (3), which

represents the dissimilarity between an element in al and its

corresponding element in bl. If we consider the distribution of

βlij across all possible mappings, we may expect that the value

of βlij for m* (call it β*lij) is among the smallest values in this

distribution (since m* is expected to minimize the

dissimilarity between al and bl). Therefore if β g
lij is the value

of the g-quantile of βlij, for some small value g (e.g.,

g∈[0.1,0.3]), then β*lij should still be smaller than β g
lij.

Consequently, if we set αlij to 1/β g
lij, the value of ψlij(m*) will

be positive for most combinations of l, i and j, and therefore

m* is expected to be rewarded the most among other

mappings. Additionally, if any mapping m has a value for km

greater than the correct value, it will have to make wrong

matches between elements of al and bl whose βlij is expected

to be greater than β g
lij and therefore the value of ψlij will be

negative and m will be penalized. Similarly, if a mapping m

has a value for km less than the correct value, it will not be as

rewarded as m*. This way, a matcher using a non-monotonic

scoring function can estimate the correct km*.

The drawback of this technique is that when the graphs

being matched are not very close to each other, the value of

β*lij can be greater than β g
lij in many cases, which results in

many false positives and false negatives in the produced

matches. In [11], the authors assumed that the value

corresponding to βlij in their problem setting, which they

called the normal distance, is uniformly distributed.

Therefore, they used the average of βlij to calculate their

control variable α. However, using the average can result in

poor results if the distribution of βlij is skewed. To address this

issue, we use quantiles instead of average. Furthermore, they

used a single value α irrespective of which element in the

graph’s adjacency matrix is being considered, while we

calculate a different value αlij for each graph type and

combination of i and j, which gives a higher accuracy.

The role of rl in (2) is similar to its role in (1). It guarantees

that the score does not exceed 1, being an upper limit for the

innermost two summations in (2). Observing from (3) that the

maximum value for ψlij(m) is 1, then based on an analysis

5

similar to that used for (1), rl is calculated as

min([min(n1,n2)]
2
, cl1

+cl2
), where cl1

 and cl2
 are the number of

nonzero elements in al and bl respectively. Note that

min(n1,n2) is used instead of km so that rl does not change as

the mapping changes.

Before considering the scoring functions for the ELUB

matcher, we first show how we calculate a score Scoreeu for a

matching pair of attributes from S1 and S2 respectively, based

on their element-level features. Table II shows a simple

feature compatibility matrix, which contrasts the features of

the first attribute (rows) to those of the second one (columns).

Scoreeu is initially zero. If both attributes have the same

feature, it is incremented by 1/4. If they have contradicting

features, it is decremented by 1. Scoreeu never exceeds 1.

TABLE II. ELEMENT-LEVEL USAGE-BASED FEATURE

COMPATIBILITY MATRIX

 key count min, max sum, avg

key 1/4 0 0 -1

count 0 1/4 0 0

min, max 0 0 1/4 0

sum, avg -1 0 0 1/4

We now consider the monotonic and non-monotonic scoring

functions used by the ELUB matcher.

Element-level monotonic scoring function

() (4)))(,(1
1

1 ,0max)(
1









−−= ∑

=

mk

i

iieu

m

m

eu pmpScore
k

mf

This function calculates the dissimilarity between pairs of

matching attributes in m using Scoreeu. It ensures that the

score is non-negative, and does not exceed 1.

Element-level non-monotonic scoring function

 (5)))))(,(1(1(
1

,0max)(
1









−−= ∑

=

mk

i

iieui

m

n

eu pmpScore
k

mf αααα

This function uses the control variable αi in the same way as

in (3), where βi, here (1-Scoreeu(pi,m(pi))), represents the

dissimilarity between a pair of attributes. It also ensures that

the score is non-negative and does not exceed 1.

To be resilient to the differences in schema layouts, the

matching phase, which uses the scoring function we have

discussed so far, is performed in two steps. In the first step,

only non-foreign-key attributes are matched, while foreign key

attributes are totally ignored. In the second step, foreign keys

are matched, while ensuring that the matches obtained in the

first step are left unchanged. The details of how the two steps

are implemented will be explained in Section V. To see the

intuition for such two steps, consider a group of non-foreign-

key attributes that are frequently queried together. Moreover,

they exist in the same table in S1, but in different tables in S2.

The two-step method, we described, will ensure that the

matching of these attributes will not rely on their relationship

with any foreign keys, which may or may not exist in the

queries depending on the schema layout. For example,

attributes I_TITLE and I_SUBJECT exist in Item table in the

X-Books schema, but in Item and Subject tables

respectively in the Y-Books schema. In our implementation,

we use a conservative approach, where the attributes ignored

in the first step are those which only appear in join predicates,

rather than any general foreign key.

V. IMPLEMENTATION

For feature extraction, we used a free SQL parser [19]. Any

other parser can be used as well. For the matching phase,

since the space of all possible mappings is very large and an

exhaustive search is too expensive, we implemented a genetic

algorithm to find the optimal mapping, as an example of

heuristic optimization methods. Other methods are also

applicable. This section gives the details of the search

algorithm and how several matchers can be combined together

including SLUB, ELUB, and non-usage-based matchers.

A. Genetic search algorithm

Genetic algorithms represent an approximate method for

solving optimization problems [14]. In our search algorithm,

each chromosome (or candidate solution) represents a possible

mapping. Hence, all mappings should have a uniform

representation regardless of the number of matches or the

identity of matched attributes. For this purpose, we introduce

the notion of dummy attributes that are added to each of S1

and S2, such that they both end up with the same number of

attributes n’. Thus, each mapping will contain precisely n’

matches connecting all attributes in both schemas. However, a

match is considered a real match only if it does not involve

dummy attributes. A mapping can now be uniformly

represented as an ordering of the n’ attributes of S2 in the form

of (yp1
, yp2

…ypn’
), where the real matches are of the form

m(i)=pi, i∈[1,n’] and both xi and ypi
 are non-dummy attributes.

The number of dummy attributes to be added depends on the

scoring function. For a monotonic function, where the

estimate
*

ˆ
mk is given to the algorithm, then exactly n2- *

ˆ
mk and

n1- *
ˆ

mk dummy attributes are added to S1 and S2 respectively,

leading to n’=n1+n2- *
ˆ

mk . This guarantees that the generated

mappings will contain at least
*

ˆ
mk real matches (in case all

dummy attributes match to non-dummy attributes). However,

since the monotonic functions presented in Section IV-B are

all decreasing in km, m* will have exactly
*

ˆ
mk real matches.

For a non-monotonic scoring function, then
*

ˆ
mk is considered

to be zero, i.e., n2 and n1 dummy attributes are added to S1 and

S2 respectively. Thus, the generated mappings may contain

any number of real matches in [0, min(n1,n2)], depending on

how many dummy attributes match to non-dummy attributes.

Since the scoring function is non-monotonic in km, m* may

also contain any number of real matches within the same

range.

In the scoring function, used as the fitness function of the

genetic algorithm, only the real matches in the mapping are

6

taken into account. Constraints are specified such that only

mappings containing some given matches are considered in

the search space. We use these constraints in the second step

of our matching phase, where the matches obtained for the

non-foreign-key attributes in the first step have to remain

fixed. The constraints are also used when the user has prior

information about some correct matches. We specify

constraints by dividing S1 attributes into constrained and non-

constrained attributes. Each constrained S1 attribute can only

match a certain S2 attribute, while unconstrained S1 attributes

are permitted to match any of the remaining S2 attributes. The

stopping criterion we set is that the highest score encountered

remains unchanged for some fixed number of iterations,

N_Iterations.

The backbone of our search algorithm is similar to any

genetic algorithm [14]. Its details are not shown here for the

lack of space. However, the specific algorithms used to

generate new mappings, make crossovers and make

mutations, all while ensuring that the generated mappings

satisfy the constraints, need more elaboration. To form the

initial population and introduce new immigrants, new

mappings are generated. The higher the score of these

mappings, the faster the search algorithm can converge.

Algorithm 1 is designed to fulfill this purpose. It is an iterative

algorithm which starts by matching a random S1 attribute to a

random S2 attribute, to which it can match. Then, at each

iteration, it picks an unmatched S1 attribute that is related to

those attributes previously matched in S1 and matches it to

another unmatched S2 attribute that is also related to the

previously-matched attributes in S2. The pair of attributes are

selected such that (a) they are permitted to match and (b) their

two relations with their predecessors (previously-matched

attributes) are closest to each other compared to the

corresponding relations of any other pair of unmatched

attributes from S1 and S2 respectively. This criterion ensures

the relatively high score desired for the generated mapping. If

no such pair is found, then any two random unmatched

attributes are selected, one from each schema, and matched

together, if they are permitted to match. This process

continues until all the n’ attributes have been matched. Note

that if the structure-level features are not involved in the

matching phase (i.e., no graphs are involved), Algorithm 1

assumes that all the attributes are unrelated.

Because of the way the number of dummy attributes is

selected, all the mappings generated by Algorithm 1 will have

km≥ *
ˆ

mk . When monotonic scoring functions are used, although

the best mapping should have km=
*

ˆ
mk , mappings of

intermediate generations having km>
*

ˆ
mk are kept in the

population if they have relatively high scores because they can

later result in finding better mappings having km=
*

ˆ
mk (i.e.,

through mutations and crossovers).

Algorithm 2 is used to generate two child mappings, c1 and

c2, from two parent mappings, m1 and m2, after crossing them

over, while algorithm 3 generates a child mapping, c, from a

parent mapping, m, after mutating it.

Algorithm 1: Generate_New_Mapping (m)

Mi: set of matched Si attributes, i∈[1,2]

Li: set of S2 attributes permitted to match xi, i∈[1,n’]

R1,i: sum of edge weights from xi to all xj∈M1 averaged

over the 16 feature graphs of S1, i,j∈[1,n’], i≠j

R2,i: sum of edge weights from yi to all yj∈M2 averaged

over the 16 feature graphs of S2, i,j∈[1,n’], i≠j

1- M1={}; M2={};

2- for each iteration t

3- if |M1|=n’

4- return m;

5- Find an unmatched S1 attribute xit
and an unmatched

S2 attribute yjt
 such that yjt

∈Lit
, R1,it

>0, R2,jt
>0, |R1,it

-

R2,jt
|≤|R1,u-R2,v|, u≠it, v≠jt, xu∉M1, yv∉M2;

6- if such pair (xit
,yjt

) does not exist

7- Let xit
 be any random unmatched S1 attribute, yjt

be any random unmatched S2 attribute, yjt
∈Lit

;

8- Let m(it)=jt;

9- Add xit
 to M1;

10- Add yjt
 to M2;

11- Remove yjt
 from Lu, u≠it;

Algorithm 2: Make_Crossover (m1, m2)

ci : the ith child mapping to be generated, i∈[1,2]

1- Copy m1 into c1;

2- Randomly divide c1 into two parts;

3- Keep the first part of c1 unchanged;

4- For the second part, keep the matches for the

constrained S1 attributes unchanged;

5- Reorder the matching S2 attributes for the

unconstrained S1 attributes in the second part of c1 to

follow the ordering of m2;

6- Generate c2 in the same way as c1 after switching the

roles of m1 and m2;

7- return {c1 , c2};

Algorithm 3: Make_Mutation (m)
c : the child mapping to be generated

1- Copy m into c;

2- Pick two random unconstrained S1 attributes xi and xj;

3- Swap c(xi) and c(xj);

4- return c;

5.2 Integration with other matching techniques

We allow the combination of any number of matching

techniques, whenever applicable, to improve the quality of the

generated mappings. In particular, we follow an aggregation

approach similar to the COMA framework [6], where an

overall score is used to capture the scores of each individual

matcher. In this scenario, each candidate mapping, generated

by the genetic algorithm, is passed to the individual matchers,

which return their individual scores. The genetic algorithm

then calculates a weighted average of the individual scores

and uses it as the fitness value. The overall scoring function

can either be monotonic or non-monotonic, depending on

whether the aggregated individual scoring functions are

themselves monotonic or non-monotonic respectively.

As an example of a non-usage-based matcher, we

implemented a data type matcher to assess the value of

combining it with usage-based matchers. The data type

7

information is typically available with each schema or can be

inferred from the query log to a certain degree of accuracy

(See Section IV-A-2). Moreover, the data types used by

different DBMSs are usually very similar. Therefore, in

practice, we would always be able to combine this matcher

with our usage-based matchers. The data type matcher (DT)

considers only three classes of data types: numeric, string and

datetime. For numeric data types it considers the scale and

precision properties, and for the string data types it considers

the length property. It uses a data type compatibility matrix to

calculate a score Scoredt for each match between two

attributes from S1 and S2 respectively.

The monotonic and non-monotonic scoring functions used

for the DT matcher are exactly similar to (4) & (5)

respectively in Section IV-B, except that Scoredt is used

instead of Scoreeu. The monotonic scoring function is:

() (6)))(,(1
1

1 ,0max)(
1









−−= ∑

=

mk

i

iidt

m

m

dt pmpScore
k

mf ,

while the non-monotonic scoring function is given by

 (7)))))(,(1(1(
1

,0max)(
1









−−= ∑

=

mk

i

iidti

m

n

dt pmpScore
k

mf α

 VI. EXPERIMENTS AND RESULTS

A. Experimental setup

We build upon the bookstores example described in Section

III. We used the Wisconsin implementation of the TPC-W

benchmark [17] to which we added a query logger

component. After each TPC-W run, two query logs are

generated for the X-Books and the Y-Books schemas

respectively. The attributes which do not appear in the query

logs were not included in these two schemas. Normally, all

schema attributes would be queried, but this is not the case for

TPC-W since it only focuses on certain aspects of the

bookstore business. For example since the integration part

with the banking system is not considered, some attributes of

the credit card transactions do not appear in the query log.

The TPC-W benchmark specifies three types of workload:

browsing mix (B), shopping mix (S), and ordering mix (O).

Read-only web interactions constitute 95%, 80%, and 50% in

browsing, shopping, and ordering mixes respectively, while

the remaining percentage is for read-write web interactions.

We generated query logs for both schemas corresponding to

the three workload mixes. In each run, 30 emulated browsers

submit requests to the bookstore application simultaneously

for about 3 hours. The size of the generated query logs range

from 10,120 to 17,819 queries. These sizes are large enough

to guarantee that the logs are representative of the workload.

The logged queries are mostly SPJGO queries with a few

SPJGO-N queries. In the TPC-W implementation, two

additional tables were used to capture the shopping cart

information. We added them to the schemas of X-Books and

Y-Books, such that the total number of attributes in each

schema became 44 and 46 respectively. The correct number of

matching attributes is 41.

In the experiments, we use the average F-measure (f) metric

to measure the average quality for all the mappings generated

with the same highest score under varying conditions. We

study the effects of combining several matchers, changing the

quality of attribute names (when schema-based techniques are

combined with usage-based techniques), changing the types of

usage relationships used, changing the parameter
*

ˆ
mk (when

monotonic scoring functions are used), changing the

parameter g (when non-monotonic scoring functions are

used), and using query logs of the same workload type versus

the two most different types (BB and BO). We compare our

technique to a hypothetical optimal matcher assumed to

always return the correct mapping as one of its highest-score

mappings. Note that because some attributes may be

indistinguishable to the matcher (e.g. they have the same data

type when only a data type matcher is used), some incorrect

mappings may have the same score as the correct mapping.

Thus, f values for that optimal matcher are not necessarily 1.

For the comparison with established techniques, we use the

Similarity Flooding (SF) algorithm [13], which is available as

open source. We could not compare our technique to that of

[11] (being also independent from the attribute name

information) because it only considered matching individual

tables rather than complete schemas as in our case.

In the graphs, we use “m” and “n” to denote monotonic and

non-monotonic scoring functions respectively. The weights

for relationship types, wl, were set to 1/16, l∈[1,16]. The

number of iterations, N_Iterations, for which the highest-score

mapping should remain unchanged before the genetic

algorithm stops (stopping criterion), was set to 500. The initial

population size was set to 50. Throughout the experiments, the

average total number of iterations required was 2305.

B. Effect of combining different matchers

In this experiment, we show the impact of combining three

basic matchers, namely SLUB, DT and ELUB, according to

eight different combinations of weights, including the cases

where they are used individually, in pairs, or all three

together. For monotonic scoring functions, a correct estimate

*
ˆ

mk for km* is used, and for non-monotonic scoring functions,

the parameter g is set to 0.2 (Recall from Section IV-B that g

controls how mappings are rewarded/penalized).

Figures 2 and 3 show the f values when the eight

combinations of matchers are used. The best results are

obtained when SLUB is combined with DT, where the f value

reaches up to 0.8. This figure is very close to what the optimal

matcher could achieve: 0.83. When used individually, SLUB

achieves higher accuracy than DT and ELUB, as its f value

reaches 0.7 when similar query logs are used (B and B, or

simply BB) and 0.5 when the most different query logs are

used (B and O, or simply BO). We also observe that using a

non-monotonic scoring function makes the matcher more

sensitive to the discrepancies between the two query logs

compared to the case when a monotonic scoring function is

used. This was expected because of the drawback of non-

monotonic scoring functions, discussed in Section IV-B.

8

ELUB proved to be more useful with the BO query logs as it

improved the accuracy when combined with each of DT and

SLUB separately (e.g. (1,0,0) vs (.6,0,.4)). However, when

combined with them together, the accuracy was not

significantly improved (e.g. (.6,.4.0) vs (.3,.3,.3)). In general,

the value ELUB can add in a combination of matchers

depends on the discriminative power of the other matchers

and the richness of the query logs in terms of element-level

features. When used separately, ELUB gave almost the same

accuracy both with BB and BO query logs. The reason is that

the same element-level features are preserved in both types of

query logs.

C. Effect of the quality of attribute names

In this experiment, we compare the matching quality of the

usage-based approach to that of SF. We study the impact of

the attribute naming quality when the following combinations

of matchers are used: SF, SLUB, (SLUB, SF), (SLUB, DT,

ELUB), and (SLUB, DT, ELUB, SF). When used in

combination, matchers are assigned equal weights. To vary

the quality of attribute names, we considered that a percentage

of the attribute names of the target schema are random strings;

i.e., they cannot be matched to the attributes of the source

schema, while the remaining percentage (pExact) represent

exact matches to those of the source schema.

Fig. 4 shows the f values when pExact varies from 0% to

100%. The monotonic scoring function is used and the query

logs of both schemas are considered to be different (BO). The

f value increases as pExact increases only when SF is used.

Otherwise, it remains constant, since SF is the only matcher

that depends on the attribute names. The f value for SF is

lower than those of SLUB and (SLUB, DT, ELUB) when

pExact is less than 20% and 60% respectively. This reflects

the superiority of the usage-based technique when the

attribute names are unreliable: the case where the usage-based

technique is needed the most. We also note that if similar

query logs were used (BB), the previous two figures would

have been 60% and 60% respectively, since SLUB performs

better with BB query logs (See Fig. 2). Furthermore, as long

as pExact is less than 80%, the combination of all matchers

provides the highest accuracy compared to any single matcher

or subset of matchers. This shows how schema-based and

usage-based matchers can reinforce each other when used in

combination. When pExact is 80% or greater (almost the ideal

case for SF), SF performs the best because the attribute name

information becomes highly reliable, making the combination

with other matchers counter-productive. We finally note that

SF manages to find some correct matches even when all

attribute names do not match (pExact=0%) because SF does

not solely depend on attribute names, but it also exploits the

structural similarities in the two schemas.

D. Effect of usage relationship types

In this experiment, we study the impact of using a subset of

the usage relationship types as opposed to using all of them.

We ranked the relationship types based on the connectivity of

their source and target graphs by counting the number of

edges in both graphs for each relationship type. This ranking

(Table III) gives an indication of the discriminative power of

the different types of relationships. Fig. 5 shows the f values

when SLUB is used with only the top R relationship types,

where R is varied from 1 to 16. The relationship types are

always given equal weights.

We use the monotonic scoring function and consider both

BB and BO query logs. The ranking of relationship types is

considered both when it is descending in the total number of

edges (as in Table III) and when it is ascending in that

number. As expected, the figure shows that, in general, the

more relationship types are used, the more effective the

matcher is. This is because each type of relationships may

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(1, 0, 0) (.6,.2,.2) (.6,.4,0) (.6,0,.4) (.3,.3,.3) (0,.5,.5) (0,1,0) (0,0,1)

Matcher weights (SLUB, DT, ELUB)

f

optimal m n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(1, 0, 0) (.6,.2,.2) (.6,.4,0) (.6,0,.4) (.3,.3,.3) (0,.5,.5) (0,1,0) (0,0,1)

Matcher weights (SLUB, DT, ELUB))

f

optimal m n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

pExact (%)

f

(SF) (SLUB) (SLUB,SF)

(SLUB,DT,ELUB) (SLUB,DT,ELUB,SF)

Fig. 2 Effect of combining matchers (BB

query logs)
Fig. 3 Effect of combining matchers (BO

query logs)
Fig. 4 Effect of varying pExact

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of usage relationship types (R)

f

BB-desc BB-asc BO-desc BO-asc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

Error in estimate of km* (%)

f

optimal-BB m-BB optimal-BO m-BO

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
g

f

optimal-BB n-BB optimal-BO n-BO

Fig. 5 Effect of usage relationship types Fig. 6 Effect of varying
*

ˆ
mk Fig. 7 Effect of varying g

9

provide additional evidences as to which attributes match.

Also, when the descending ranking is used, f converges to its

highest values much faster than the ascending case, as the

most discriminative types of relationships are considered first

in the case of the descending ranking.

TABLE III. RANKING OF USAGE RELATIONSHIPS

Usage relationship type Total no. of edges Rank

select-select 339 1

where-select 91 2

select-where 91 3

where-where 62 4

orderby-select 18 5

select-orderby 18 6

groupby-groupby 17 7

groupby-select 17 8

select-groupby 17 9

orderby-where 10 10

groupby-where 10 11

where-orderby 10 12

where-groupby 10 13

orderby-orderby 9 14

orderby-groupby 5 15

groupby-orderby 5 16

E. Effect of the parameter
*

ˆ
mk

Fig. 6 shows the f values when the matcher uses a

monotonic scoring function and the error in the estimate
*

ˆ
mk

varies from 0% to 50%. The matcher is a combination of

SLUB, DT and ELUB with weights 0.6, 0.2 and 0.2

respectively. Interestingly, the accuracy does not sharply

deteriorate as the error in
*

ˆ
mk increases. For instance, the f

value for a 25% error is almost 0.6, which is very reasonable,

considering that 25% error means that the matcher is

explicitly instructed to return 25% fewer matches than the

correct number of matches. Fig. 5 also confirms that a

matcher using a monotonic function is not very sensitive to

discrepancies in the query logs, since the BB and BO curves

are not far from each other. For the optimal matcher, the BB

and BO curves coincide because, in our experiment setting,

the B and O query logs, are similar in terms of which

attributes are indistinguishable to the matcher and which

attributes are not.

F. Effect of the parameter g

Fig. 7 shows the effect of varying the parameter g on the f

values when the matcher uses a non-monotonic function. The

specific matcher used is also a combination of SLUB, DT and

ELUB with weights 0.6, 0.2 and 0.2 respectively. As

expected, the matcher performs better with BB query logs

compared to BO query logs. In the former case, the f values

remain at their peak for a big range of g (0.2-0.7), while in the

later case they peak when g is less than 0.3. Generally, a small

g can result in penalizing correct mappings, while a large g

can result in rewarding erroneous mappings, which leads in

both cases to a lower accuracy.

VII. CONCLUSIONS

We introduced a new class of techniques, usage-based

schema matching, where the usage information in the query

logs is used to find correspondences between the attributes of

two schemas. Our experimental study demonstrated the

effectiveness of the proposed technique and the value of

combining it with other matchers, including the Similarity

Flooding algorithm. The results showed that when the

attribute name information is of low quality, usage-based

techniques outperform schema-based techniques. However,

when combined together, the matching quality improves on

average compared to using either technique in isolation.

While this paper was focusing on relational schemas and

SQL, a natural next step would be to investigate the

applicability of our approach in an XML context with a query

language like XQuery. Furthermore, building a repository of

query logs obtained from real world systems can be very

useful in studying the effectiveness of any technique that

relies on query log analysis, such as ours. Finally, it would be

interesting to study the possibility of using the query logs to

discover Global-As-View (GAV) or Local-As-View (LAV)

mappings, where a table in one schema is expressed as a view

over the other schema.

REFERENCES

[1] Y. An et al. A semantic approach to discovering schema

mapping expressions. In ICDE, 2007.

[2] P. Bohannon, E. Elnahrawy, W. Fan, and M. Flaster. Putting

context into schema matching. In VLDB, 2006.

[3] N. Bruno and S. Chaudhuri. Automatic physical database

tuning: a relaxation-based approach. In SIGMOD 2005.

[4] B. Dageville et al. Automatic SQL tuning in Oracle 10g. In

VLDB, 2004.

[5] R. Dhamankar et al. iMAP: discovering complex semantic

matches between database schemas. In SIGMOD, 2004.

[6] H. Do and E. Rahm. COMA - A system for flexible

combination of schema matching approaches. In VLDB, 2002.

[7] A. Doan et al. Reconciling schemas of disparate data sources: A

machine learning approach. In SIGMOD, 2001.

[8] L. Haas et al. Clio grows up: from research prototype to

industrial tool. In SIGMOD, 2005.

[9] B. He and K. Chang. Statistical schema matching across web

query interfaces. In SIGMOD, 2003.

[10] J. Kang and J. Naughton. On schema matching with opaque

column names and data values. In SIGMOD, 2003.

[11] J. Madhavan, P. Bernstein, A. Doan, and A. Halevy. Corpus-

based schema matching. In ICDE, 2005.

[12] J. Madhavan, P. Bernstein, and E. Rahm. Generic schema

matching with Cupid. In VLDB, 2001.

[13] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding:

a versatile graph matching algorithm. In ICDE, 2002.

[14] M. Mitchell, Introduction to Genetic Algorithms, MIT Press,

Cambridge, MA, 1996.

[15] E. Rahm and P. Bernstein. A survey of approaches to automatic

schema matching. VLDB Journal, 10(4), 2001.

[16] The TPC-W benchmark. http://www.tpc.org/tpcw

[17] http://www.ece.wisc.edu/~pharm/tpcw.shtml

[18] R. Warren and F. Tompa. Multi-column substring matching for

database schema translation. In VLDB, 2006.

[19] http://www.experlog.com/gibello/zql/

10

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
